Register to see a recording of our webinar with Bi-Link about 3D printed Injection Molds

Bi-Link 是一家全球工程及制造公司,总部位于伊利诺斯州的布鲁明戴尔,要从它的研发总监 Frank Ziberna 那里获得突破并非难事。只需告诉他有些事无法做到即可。

Over the last three years, Ziberna and his colleagues at Bi-Link have heard all about the limitations of 3D printing for creating injection molds and production-quality sample parts: not fast enough, quality’s not up to snuff, can’t use production-level materials, molds can’t stand the heat or pressure. Like the biblical David, Bi-Link has smitten all comers.


Bi-Link currently uses three ProJet® MJP (multi Jet Printing) systems from 3D Systems to produce injection mold tooling and sample parts. The ProJet MJP is designed to produce functional plastic parts for professional-grade design and manufacturing applications. It uses 3D Systems’ specially engineered VisiJet® M3 materials, offering UV-curable plastic in a range of colors, translucencies and tensile strengths.

The combination of 3D Systems’ printers, advanced materials, and a proprietary post-processing tempering technique gives the finished molds greater strength than the original material, according to Bi-Link’s president, Ray Ziganto.

The beneficiaries of Bi-Link’s capabilities are electronics and medical manufacturing companies around the world—most of which can’t be named because of confidentiality agreements—for which Bi-Link delivers what was previously thought impossible.

“Customers love this service,” says Ziberna. “They would typically have to wait two to three weeks to get just tooling, never mind test parts. With the ProJet MJP we made one customer four different part designs over the course of six days, shipping them 10-12 parts for each iteration overnight.



The sample parts created by Bi-Link use the same material as the customer’s production parts, whether it is liquid crystal polymer (LCP), polycarbonate, polystyrene, elastomer or other thermoplastic materials. Bi-Link has even developed 3D-printed molds for insert-molding applications.

Ziberna 说:“客户无需在设计上有所顾忌或做出让步。我们提供的部件所使用的材料与客户在生产中实际使用的材料相同,因此客户无需调整设计或修改部件。”

No corners are cut when it comes to performance, either. Bi-Link’s molds often are subjected to temperatures of more than 600 degrees Fahrenheit and withstand several tons of pressure with no degradation, according to Ziberna.

“You can put the 3D printed mold in the Morgan (a small plastic molding machine) and exert eight to 10 tons of pressure and it doesn’t mind,” he says.

Forms, fixtures, insert mold tooling, hybrid tools, thermoforming -- Bi-Link can do just about anything up to 10 inches long. As many as 200 parts can be manufactured from a typical injection mold printed in the ProJet MJP and finished with Bi-Link’s tempering process. A customer that provides Bi-Link with a CAD file in the morning can be making parts the next afternoon from the 3D-printed mold.

The sample parts and injection molds aren’t limited to simple patterns. Ziberna is happy to show the level of detail Bi-Link can achieve, rattling off features such as deep cores and recesses, tiny holes, clamp inserts in the mold, thin walls, small undercuts, and fine 1.5mm teeth.

“We make no concessions on tolerances,” he says. “We demand the same quality for parts as we get out of a steel mold. Any part you can manufacture, we can produce from a 3D-printed mold -- exact material at a lower cost and one-fifth the lead time.”



“We make no concessions on tolerances. We demand the same quality for parts as we get out of a steel mold. Any part you can manufacture, we can produce from a 3D-printed mold -- exact material at a lower cost and one-fifth the lead time.”
—Frank Ziberna, R&D Director, Bi-Link


人们往往更愿意相信有些言论可能只是虚张声势,直到一位客户证实了 Ziberna 的一切说法(工艺真实地展示在眼前,且部件经过了仔细检查)。

Curt Thornton, principal engineer for surgical R&D at Teleflex, based in Research Triangle Park, NC, is happy to provide testimony. Teleflex is a global provider of medical devices used in critical care and surgery. The company uses Bi-Link for both prototype and production components, usually 100 parts or less.

“I’ve been really impressed with the insert molds that Bi-Link has made from the 3D Systems printer,” says Thornton. “These tools really give us an assembly that represents a production process at a fraction of the cost.”

Thornton says that Teleflex has used the 3D-printed molds to produce more than a dozen different components from materials that include polycarbonate, ABS (acrylonitrile butadiene styrene) and LCP. He expects 3D printing to continue playing a major role in his company’s experiments with new designs and materials.

“You never know what new materials or processes will be required to produce a complete product. Bi-Link’s 3D printing tools and expertise give us options for low-volume prototypes that were not available in the past.”


Naturally, Ray Ziganto, Bi-Link’s president, has a vision for the future of 3D printing for injection molding and tooling.

“It’s time to start looking beyond the obvious uses of 3D printing -- creating a physical representation of a CAD model -- and really challenge the capabilities of the technology,” he says.

Ziganto sees a wider range of materials coming into the 3D printing mainstream, including greater use of metal and metal replacement parts for tooling and components, biocompatible materials for implants and other applications requiring human contact, conductive materials for electronics, and elastomers for wearable products.

他表示:“我很乐意看到这项技术能够更好地应对不同的模具变化,进而实现 RIM(反应注射成型)、金属加工/冲压以及线材成形等工艺。”

With 3D printing capabilities roughly doubling every 18 months for the last 10 years according to 3D Systems, it’s a good bet that Ziganto’s wish list will be fulfilled. In the words of Curt Thornton of Teleflex: “The future of 3D printing is limited only to one’s imagination.”