

VisiJet® M2R-TN

Rigide pour production

Plastique rigide à usage général présentant une finition beige opaque à contraste visuel élevé, offrant le juste équilibre entre résistance et allongement et un HDT élevé

ProJet MJP 2500

Comme le VisiJet M2R-BK (noir), le VisiJet M2R-TN présente une résistance à la traction et des propriétés de module supérieures à celles des matériaux VisiJet M2 standard. Il s'agit d'un plastique plus solide et plus rigide qui convient à un large éventail de modèles concepts et de prototypes fonctionnels. Il présente une grande fidélité des détails, des arêtes et des angles nets et une finition de surface lisse. C'est un matériau à usage général qui offre une grande précision et une couleur à fort contraste visuel. Il convient au prototypage général, aux maquettes dentaires et aux moulages dentaires.

Remarque : certains produits et matériaux ne sont pas disponibles dans tous les pays – Veuillez contacter votre représentant commercial local pour connaître leur disponibilité.

APPLICATIONS

- Impression simultanée de maquettes dentaires et de modèles de moulage de moufle
- Matériau idéal pour l'outillage en silicone standard et numérique avec la méthode en coquille
- Prototypes fonctionnels opaques et certaines pièces d'utilisation finale
- Prototypage rapide de pièces thermoplastiques moulées par injection de plastique
- Peut être percé, taraudé et usiné
- Assemblages fonctionnels imprimés et bossages de vis moulés par injection
- Filetages de vis imprimés fonctionnels et parois fines
- Supports, prototypes et maquettes commerciaux/ marketing peints

AVANTAGES

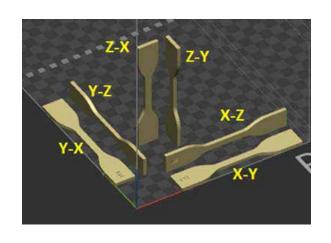
- Détails fins de haute fidélité, arêtes nettes et précision élevée
- Finition de surface exceptionnellement lisse et régulière
- Couleur beige à contraste élevé permettant de visualiser facilement les détails de la surface
- Pas d'inhibition du durcissement en surface des peintures ou des silicones. Aucun ponçage n'est nécessaire.
- Excellent pour la peinture. Idéal pour les applications de moulage en coquille.

CARACTÉRISTIQUES

- Résistance et rigidité modérées/élevées, allongement de 6 à 12 %
- Capable de produire des structures extrêmement petites et complexes
- Précision élevée et étanchéité
- · Biocompatible USP classe VI

PROPRIÉTÉS DU MATÉRIAU

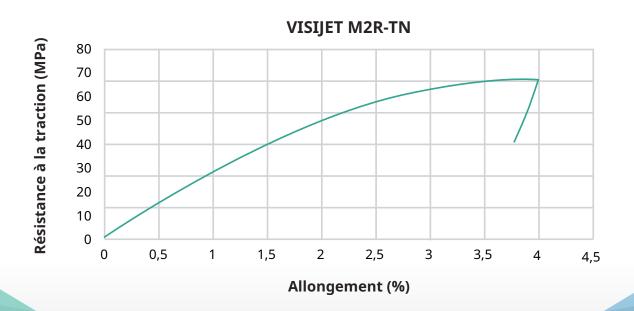
L'ensemble complet des propriétés mécaniques est donné selon les normes ASTM et ISO, le cas échéant. Des propriétés telles que l'inflammabilité, les propriétés diélectriques et l'absorption d'eau sur 24 heures sont par ailleurs indiquées, afin de mieux comprendre les capacités du matériau pour prendre des décisions de conception plus pertinentes. Toutes les pièces sont conditionnées conformément aux normes ASTM recommandées pour un minimum de 40 heures à 23 °C, avec 50 % d'humidité relative.


Les propriétés des matériaux solides indiquées reflètent une impression le long de l'axe vertical (orientation ZX). Comme indiqué dans la section sur les propriétés isotropes, les propriétés des matériaux de l'impression MultiJet (MJP) sont relativement uniformes selon l'orientation de l'impression. Les pièces n'ont pas besoin d'être orientées dans une direction particulière pour présenter ces propriétés.

		MATÉRIAU LIQUIDE				
PROPRIÉTÉ	CONDITION/MÉTHODE		SYSTÈME MÉTRIQUE			
Couleur			Brun clair			
MATÉRIAU SOLIDE						
PROPRIÉTÉ	MÉTHODE ASTM	SYSTÈME MÉTRIQUE	MÉTHODE ISO	SYSTÈME MÉTRIQUE		
	PHYSIQUE		PHYSIQUE			
Densité à l'état solide	ASTM D792	1,16 g/cm³	ISO 1183	1,16 g/cm³		
Absorption d'eau (24 heures)	ASTM D570	≤0,5 %	ISO 62	≤0,5 %		
	MÉCANIQUE		MÉG	ÉCANIQUE		
Résistance à la traction, maximale	ASTM D638	67 MPa	ISO 527 -1/2	60 MPa		
Résistance à la traction, à la limite	ASTM D638	67 MPa	ISO 527 -1/2	N/A		
Module de traction	ASTM D638	3 000 MPa	ISO 527 -1/2	2 700 MPa		
Allongement à la rupture	ASTM D638	4,0 %	ISO 527 -1/2	3,1 %		
Allongement au seuil de fluage	ASTM D638	3,6 %	ISO 527 -1/2	N/A		
Résistance à la flexion	ASTM D790	100 MPa	ISO 178	100 MPa		
Module de flexion	ASTM D790	3 100 MPa	ISO 178	3 300 MPa		
Résistance aux chocs (Izod entaillée)	ASTM D256	14 J/m	ISO 180-A	1,9 J/m²		
Résistance aux chocs (Izod lisse)	ASTM D4812	120 J/m	ISO 180-U			
Dureté Shore	ASTM D2240	83D	ISO 7619	83D		
	THERMIQUE		THERMIQUE			
Tg (DMA, E")	ASTM E1640 (E" à 1C/min)	58 °C	ISO 6721-1/11 (E" à 1C/min)	58 °C		
HDT à 0,455 MPa	ASTM D648	70 °C	ISO 75- 1/2 B	65 °C		
HDT à 1,82 MPa	ASTM D648	58 °C	ISO 75-1/2 A	53 °C		
Coefficient de dilatation thermique inférieur à Tg	ASTM E831	74 ppm/°C	ISO 11359-2	74 ppm/K		
Coefficient de dilatation thermique supérieur à Tg	ASTM E831	170 ppm/°C	ISO 11359-2	170 ppm/K		
Inflammabilité UL	UL 94	НВ				
	ALIMENTATION ÉLECTRIQUE		ALIMENTATION ÉLECTRIQUE			
Rigidité diélectrique (kV/mm) à 3,0 mm d'épaisseur	ASTM D149	15,1				
Constante diélectrique à 1 MHz	ASTM D150	3,14				
Facteur de dissipation à 1 MHz	ASTM D150	0,018				
Résistivité volumique (ohm-cm)	ASTM D257	7,16E+15				

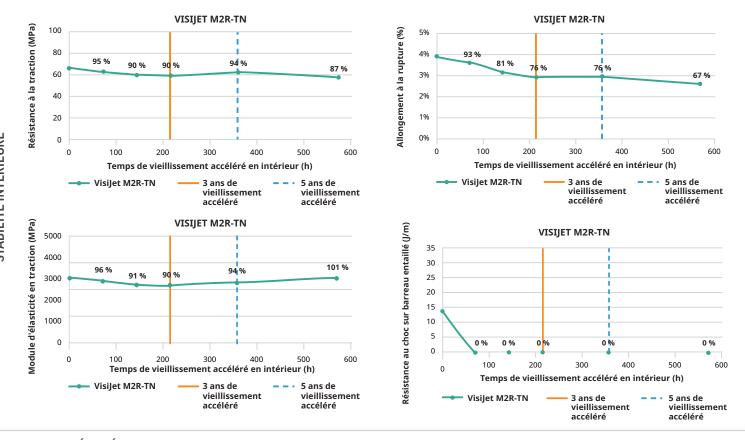
PROPRIÉTÉS ISOTROPES

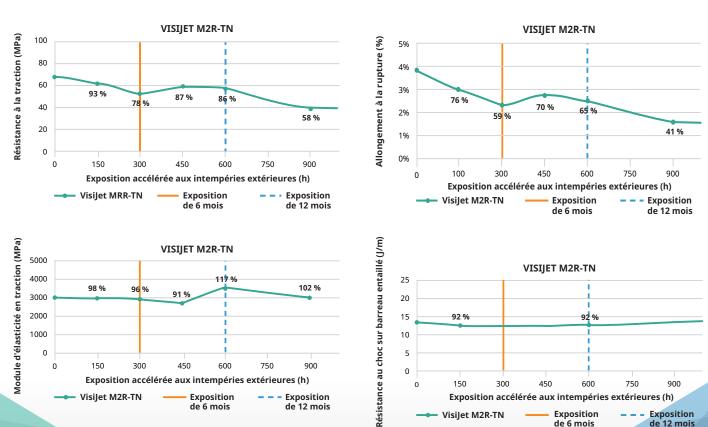
La technologie MJP imprime des pièces dont les propriétés mécaniques sont généralement isotropes, ce qui signifie que les pièces imprimées selon les axes X, Y ou Z donneront des résultats similaires.


Il n'est pas nécessaire d'orienter les pièces pour obtenir les propriétés mécaniques les plus élevées, ce qui améliore le degré de liberté en matière d'orientation des pièces pour les propriétés.

MATÉRIAU SOLIDE								
PROPRIÉTÉ	SYSTÈME MÉTRIQUE							
MÉCANIQUE								
		XY	XZ	YX	YZ	Z45	ZX	ZY
Résistance à la traction, maximale	ASTM D638 Type IV	67 MPa	64 MPa	65 MPa	61 MPa	65 MPa	25 MPa	34 MPa
Résistance à la traction, à la limite	ASTM D638 Type IV	67 MPa	64 MPa	N/A	63 MPa	65 MPa	N/A	N/A
Module de traction	ASTM D638 Type IV	3 000 MPa	2 800 MPa	2 900 MPa	2 800 MPa	2 600 MPa	2 800 MPa	2 700 MPa
Allongement à la rupture	ASTM D638 Type IV	4 %	5,8 %	4,2 %	4,5 %	4,3 %	1 %	1,4 %
Allongement au seuil de fluage	ASTM D638 Type IV	3,6 %	4,1 %	N/A	4 %	4,1 %	N/A	N/A
Résistance à la flexion	ASTM D790	100 MPa	87 MPa	99 MPa	80 MPa	86 MPa	56 MPa	44 MPa
Module de flexion	ASTM D790	3 100 MPa	2 400 MPa	2 900 MPa	2 300 MPa	2 600 MPa	2 400 MPa	2 200 MPa
Résistance aux chocs (Izod entaillée)	ASTM D256	14 J/m	14 J/m	14 J/m	15 J/m	13 J/m	14 J/m	13 J/m
Dureté Shore	ASTM D2240	83D	80D	80D	81D	81D	83D	81D

COMPARAISON ENTRE LA COURBE DE CONTRAINTE ET LA COURBE DE DÉFORMATION


Le graphique représente la comparaison entre la courbe de contrainte et la courbe de déformation du VisiJet M2R-TN testé selon la norme ASTM D638.


STABILITÉ ENVIRONNEMENTALE À LONG TERME

Le VisiJet M2R-TN est conçu pour offrir une stabilité à long terme aux rayons UV et à l'humidité ambiante. Cela signifie que la capacité de ce matériau à conserver un pourcentage élevé des propriétés mécaniques initiales sur une période donnée est testée. La valeur des données réelles se trouve sur l'axe Y et les points de données sont des pourcentages de la valeur initiale.

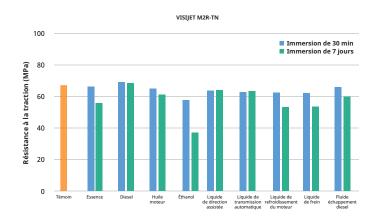
STABILITÉ INTÉRIEURE: testée selon la méthode de la norme ASTM D4329.

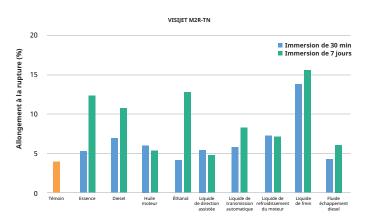
STABILITÉ EXTÉRIEURE: testée selon la méthode de la norme ASTM G154.

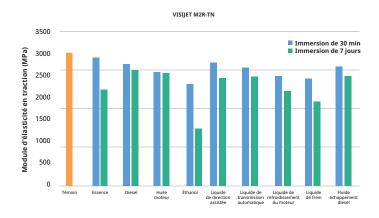
de 12 mois

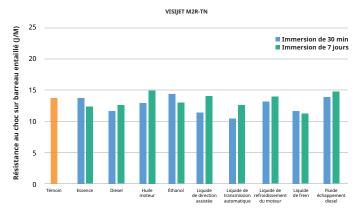
de 6 mois

COMPATIBILITÉ DES FLUIDES AUTOMOBILES


La compatibilité d'un matériau avec les hydrocarbures et les produits chimiques de nettoyage est essentielle à l'application de la pièce. La compatibilité des pièces VisiJet M2R-TN avec le contact hermétique et de surface a été testée selon les conditions du test USCAR2. Les fluides ci-dessous ont été testés de deux manières différentes :

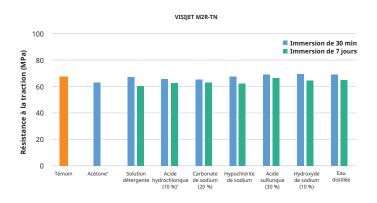

- Immersion pendant 7 jours, suivie d'une comparaison des propriétés mécaniques.
- Immersion pendant 30 minutes, suivie d'une comparaison des propriétés mécaniques avec les données de 7 jours.

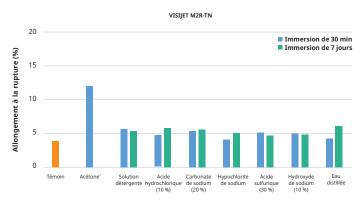

Les données reflètent la valeur mesurée des propriétés sur cette période.

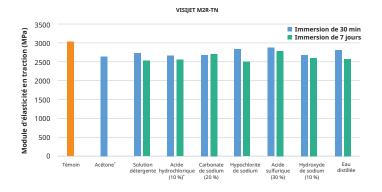

FLUIDES AUTOMOBILES					
FLUIDE	CARACTÉRISTIQUES	TEMPÉRATURE DE TEST °C			
Essence	ISO 1817, liquide C	23 ± 5			
Carburant diesel	905 ISO 1817, huile no. 3 + 10 % p-xylène*	23 ± 5			
Huile moteur	ISO 1817, huile no. 2	50 ± 3			
Éthanol	85 % d'éthanol + 15 % ISO 1817, liquide C*	23 ± 5			
Liquide de direction assistée	ISO 1917, huile no. 3	50 ± 3			
Liquide de transmission automatique	Dexron VI (matériau spécifique à l'Amérique du Nord)	50 ± 3			
Liquide de refroidissement du moteur	50 % d'éthylène glycol + 50 % d'eau distillée*	50 ± 3			
Liquide de frein	SAE RM66xx (utiliser le dernier liquide disponible pour xx)	50 ± 3			
Fluide échappement diesel (FED)	Certifié par l'API selon la norme ISO 22241	23 ± 5			

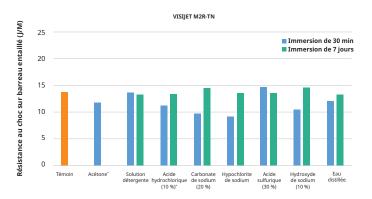
^{*} Les solutions sont déterminées en pourcentage par volume

COMPATIBILITÉ CHIMIQUE


La compatibilité d'un matériau avec les produits chimiques de nettoyage est essentielle à l'application de la pièce. La compatibilité des pièces VisiJet M2R-TN avec le contact scellé et de surface a été testée selon les conditions du test ASTM D543. Les fluides ci-dessous ont été testés de deux manières différentes :


- Immersion pendant 7 jours, suivie d'une comparaison des propriétés mécaniques.
- Immersion pendant 30 minutes, suivie d'une comparaison des propriétés mécaniques avec les données de 7 jours.


Les données reflètent la valeur mesurée des propriétés sur cette période.


* Indique que les matériaux n'ont pas été trempés pendant 7 jours.

COMPATIBILITÉ CHIMIQUE
6.3.3 Acétone
6.3.12 Solution détergente, puissante
6.3.23 Acide hydrochlorique (10 %)
6.3.38 Solution de carbonate de sodium (20 %)
6.3.44 Solution d'hypochlorite de sodium
6.3.46 Acide sulfurique (30 %)
6.3.42 Solution d'hydroxyde de sodium (10 %)
6.3.15 Eau distillée

DÉCLARATION DE BIOCOMPATIBILITÉ

Le matériau VisiJet M2R-TN imprimé dans une ProJet 2500 a satisfait aux exigences du test USP classe VI. Sur la base de ces résultats, 3D Systems s'attend à ce que des articles similaires fabriqués à partir de ce matériau répondent aux exigences de conformité de l'USP classe VI lorsque les pièces produites sont nettoyées selon les méthodes décrites dans le Guide de l'utilisateur.

Il incombe à chaque client de déterminer indépendamment que l'utilisation du matériau VisiJet M2R-TN pour son application spécifique est sûre, légale et techniquement appropriée. Les clients doivent effectuer leurs propres tests pour s'assurer de la conformité à toute exigence spécifique. 3D Systems recommande à ses clients de revérifier l'adéquation des matériaux pour les applications nécessitant une conformité à l'USP class VI au moins tous les deux ans à compter de la date de cette publication, en raison de changements potentiels dans la loi, les réglementations, la formulation des matériaux ou les méthodes de fabrication.

Pour de plus amples informations sur le matériau VisiJet M2R-TN, veuillez contacter votre représentant commercial local.